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Abstract

The purpose of this study is to evaluate the feasibility of remote memory access (RMA)

programming on shared memory parallel computers. We discuss different RMA based

implementations of selected CFD application benchmark kernels and compare them to

corresponding message passing based codes For the message-passing implementation we

use MPI point-to-point and global communication routines. For the RMA based

approach we consider two different libraries supporting this programming model. One is

a shared memory parallel&ation library (SMPlib) developed at NASA Ames, the other is

the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different

implementation strategies and discuss the performance.

1. Introduction

In this study we will compare different programming paradigms for the parallelization of large

scientific applications on shared memory computer architectures. The applications we consider

are such that they can be divided into sub-problems so that many processes can work together on

different parts of the same data structure.

Parallel programming on a shared memory machine can take advantage of the globally shared

address space. Compilers for shared memory architectures usually support multi-threaded

execution of a program. I,oop level parallelism can be exploited by using compiler directives

such as those defined in the OpenMP standard [5]. Lightweight threads are automatically created

for performing the work in parallel. Data transfer between threads is done by direct memory

references. This approach provides a relatively easy way to develop parallel programs but has

disadvantages. It is difficult to achieve scalability for a large number of processors and it is not

portable to distributed memory architectures.

The programming models considered in this study assume that each process has its own local

memory. The message passing programming model is a well understood programming paradigm

for this situation. The computational work and the associated data are distributed between a

number of processes. If a process needs to access data located in the memory of another process,
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it has to be communicated via the exchange of messages. The data transfer requires cooperative

operations to be performed by each process, that is, every send must have a matching receive.

The regular message passing communication achieves two effects: communication of data from

sender to receiver and synchronization of sender with receiver. The Remote Memory Access

(RMA) programming model is also based on the concept of processes with their own local

memory, but it separates the communication and synchronization step. A process is allowed to

directly read from or write to data areas located on other processes, without the exchange of

messages. Data transfer between two processes is performed by only one side and does not

require a matching operation by the other process. The correct ordering of memory accesses has

to be imposed by the user through explicit synchronization.

Both programming models are applicable on distributed as well as shared memory computer

architectures. Message passing on a shared memory machine may be implemented as memory-

to-memory, however, librmies supporting this paradigm, such as the MPI 1.1 standard [3], often

impose a high latency. The RMA functionality allows implementations to directly take

advantage of fast communication mechanisms provided by the hardware platform, such as

coherent shared memory, hardware supported put and get operations or communication co-

processors.

In this study we evaluate their effect on performance for programming shared memory

architectures. We first discuss different RMA programming paradigms in Section 2, present

benchmark implementations with RMA in Section 3, compare the performance results in Section

4, and conclude in the last section.

2. Library Support for Different Parallel Programming Paradigms

To study the impact on performance of the message passing vs. RMA parallel programming

paradigm, we chose two libraries supporting these programming models.

2.1. MPI and MPI-2

MPI (Message Passing Interface) [3] is a widely accepted standard for writing message passing

programs. It is a standard programming interface for the construction of a portable, parallel

application in Fortran or in C, especially when the application can be decomposed into a fixed

number of processes operating in a fixed topology (for example, a pipeline, grid, or tree). MPI

provides the user with a programming model where processes communicate by calling library

routines to send and receive messages to other processes. Pairs of processes can perform point-

to-point communication to exchange messages. A group of processes can call collective

communication routines Io implement global operations such as broadcasting values or

calculating global sums. Global synchronization can be implemented by calls to barrier routines.

Asynchronous communication is supported by providing calls for probing and waiting for certain
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messages. For all communication operations the sending as well as the receiving side have to

issue calls to the message-passing library.

MPI-2 [4] is an extension to the MPI standard. MPI-2 provides one-sided communication

routines to support the RMA programming model. These routines extend the communication

mechanism of MPI by allowing one process to specify all communications parameters. RMA is

initiated with a collective library call where each process specifies an area of memory that is

made accessible to remote processes. This shared memory buffer is used for the exchange of

data. A call to a one-sided communication routine needs to be issued only by one process and

does not require a matching call by sender or receiver respectively. MPI-2 provides point-to-

point and barrier synchronization operations and it is the user's responsibility to ensure memory

coherence. The MPI-2 exte_sions that we used in our study are:

• MPI_Win_create: A collective routine for setting up a shared memory buffer.

• MPI_Get, MPI_Put: Routines for transferring data to and from a shared memory buffer,

• MPI Win_fence: A routine for performing collective synchronization.

MPI-2 extensions also include routines for point-to-point synchronization, however, they were

not available on the hardware platforms that we used for our study.

The SGI Origin offers the SHMEM library which provides similar functionality as the MPI-2

extensions for one-sided communication, Since this library is only available on SGI systems we

chose the MPI-2 extensions for our study to have more potential for portability to other systems.

2.2. MLP and SMPlib

MLP is a methodology of programming developed by Taft [8] at NASA Ames Research Center

for achieving high levels of parallel efficiency on shared memory machines. It exploits two-level

parallelism in applications: coarse-gained (domain decomposition) with forked processes and

fine-grained (loop level) with OpenMP threads. Communication between MLP processors is

done by directly accessing data in a shared memory buffer, and as a result MLP has very high

bandwidth and low latency. Coupled with the second level parallelism MLP has demonstrated

scalability on more than 50!) processors for real CFD problems [8].

The shared-memory parallel programming model in MLP is summarized in Figure 1. A program

starts with a single process, the master process, to perform initialization, such as reading input

data from a file, and set up necessary shared memory buffers (or arena) for communication.

Additional processes are then created via the fork call. The forked processes have a private copy

of the virtual memory ot the master process except for the shared memory arena. Thus,

broadcasting any input data is not necessary in this model as it would have been required in a

message passing program. "['he master and its forked processes then work on the designated code

segments in parallel and synchronize as needed.
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The MLP library (MLPIib) consists of only three routines:

MLP_getmem to get a piece of shared memory, MLP_forki t

to spawn processes and MLP_barrier to synchronize

processes. The simplicity of MLPIib makes programming with

MLP relatively easier, even though a user still needs to perform

the tedious task of domain decomposition. The main limitation

of MLPlib is its lack of point-to-point synchronization

primitives, which are usually required for more general class of

applications.

We have extended the IVII_P concept to overcome some of its

limitations and developed the SMP library (SMPlib). SMPlib

includes the SMP Signal and SMP_Wait primitives for

point-to-point synchronization between processors. A processor

may update a shared buffer and use SMP_Signal to inform

another processor the availability of the data; the other

processor can use SMP_Wa i t for the notification of the signal

I InitializeI
÷

Set up shared I
Imemory arena

+

[ Fork processes ]
+,i, ÷

]Execute parallel

[._ISynchr°nize

Figure 1: The shared-memory

parallel programming model

with forked processes.

to copy data from the shared buffer. The Signal/Wait approach is very flexible and in general has

less communication overhead than a global barrier. In the meantime SMPlib still maintains a

simple programming interface like MLP and can easily be applied to more general applications.

In the current study, we focus on the effectiveness of the first level parallelism with SMPlib, that

is, the fine-grained loop-level parallelism with OpenMP is not considered.

SMPlib supports RMA programming but employs a somewhat different programming paradigm

from MPI-2. The properties of the different programming models are summarized in Figure 2

-4-
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Figure 2: Properties of the different programming paradigms.

3. Benchmark Implementations

We used the NAS Parallel Benchmarks (NPBs) [1] for our RMA study. The NPB suite consists

of five kernels and three simulated CFD applications derived from important classes of

aerophysics applications, the five kernels mimic the computational core of five numerical

methods used by CFD applications. The simulated CFD applicatioris reproduce much of the data

movement and computation found in full CFD codes. We chose a subset of the NPB consisting

of the three application benchmarks (BT, SP and LU) for our study.

3.1. Porting Message Passing to RMA

As a basis for our evaluation we started with the MPI implementation NPB2.3 [2] of the

benchmarks, which we ported to the RMA programming model. We adopted the domain

decomposition strategy of these implementations which we will explain in more detail below.

Porting from message passing to RMA consists of three major steps. In the RMA initialization

phase a shared memory buffer has to be allocated. This buffer will be used to hold data that

needs to be accessed by remote processes. The second step consists of replacing the calls to the

message passing routines by read and write operations from and to the shared memory buffer. At

last necessary calls to synchronization routines have to be inserted.
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There are two approaches to synchronization. A collective call to a barrier routine will cause

all processes to wait until lhe last process has reached the barrier. Another approach is point-to-

point synchronization where a process waits for one particular named process until it receives a

signal.

In all of our implementations each process logically owns a specific part of the shared memory

buffer. We distinguish between two methods to update the values in the shared memory buffer.

A process can place values to be communicated in its own segment of the buffer. The remote

process requiring the data will read it from there. We refer to this approach as the GET method.

Alternatively a process can write data directly into a remote processes segment of the shared

memory buffer. We refer to this approach as the PUT method. Figure 2 illustrates the two

methods.

i 0 112 31Buffer0 1 213.

L_2 1 2 31Nodes]0[1 213

The GET method The PUT method

Figure 3: Two ways of updating the shared memory buffer. Arrows with

solid line indicate writing, while the dashed lines indicate reading.

The code fragments in Figare 4 show the nature of the coding differences when employing the

various communication libraries. The code implements the communication of one word in

variable A from process PI to process P2. In the MPI message passing version process P1 issues

a call to mpi_send while process P2 makes the corresponding call to mp2 receive. When

using the MPI-2 extension for one-sided communication, process PI writes A to the shared

memory buffer. Then the processes synchronize via a call to mpi_win_fence before process

P2 issues a call to mpi_get to read A, For the SMP based implementation we show the use of

point-to-point synchronization. Process P1 write A to its segment of the shared memory buffer.

For simplicity we assume that the size of the segment is 1 and use the process ID of P1 to index

the buffer. Then process PI sends a signal to P2. Process P2 waits until it receives a signal from

P1 and then reads the updated value from the buffer.
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MPI

if (iam .eq. PI) then

call mpi_send(...A, P2 .... )

endif

if (Jam eq. P2) then

call mpi_receive(...B, P1 .... )

endif

MPI-2

if (Jam .eq. PI) then

buffer (1) = A

endif

call mpi_win_fence(...)

if (iam .eq. P2) then

call mpi_get (..buffer, P1 .... )

B = buffer (1)

endif

SMP Signal/Wait

if (iam .eq.P1) then

buffer (P1) = A

call smp_signal (P2)

endif

if (iam .eq. P2) then

call smp_wait (P1)

B = buffer (P 1)

endif

Figure 4: Code examples for communication operations

3.2. BT and SP Benchmarks

BT and SP benchmarks have a similar structure: each solves three systems of equations resulting

from an approximate factorization that decouples the x, y and z dimensions of 3-dimensional

Navier-Stokes equations. "Ihese systems are block tridiagonal of 5x5 blocks in the BT code and

scalar pentadiagonal in the SP code. Each direction is alternatively swept.

The MPI implementations of BT and SP employ a multi-partition scheme [2] in 3-D to achieve

good load balance and coarse-grained communication. In this scheme, processors are mapped

onto sub-blocks of points of the grid in a special way such that the sub-blocks are evenly

distributed along any direction of solution, as illustrated in Figure 3 for a 2-D case. Throughout

the sweep in one direction, each processor starts working on its sub-block and sends partial

solutions to the next processor before going into the next stage. Communications occur at the

sync points as indicated by gray lines in Figure 5.

In the RMA implementations of the benchmarks, communications are handled by data

exchange through the shared memory buffers and proper synchronization primitives. As

mentioned in Section 3.1, we have used two methods to handle the communication at the sync

points in the solvers: banier synchronization (BAR) and signal/wait (SW). With the BAR

method, all processors copy local data to their designated shared memory buffers and place a

global barrier before copying the shared data to the local area. With the SW method, each

sending processor copies local data to its designated shared memory buffer and signals its

neighbor the shared data is ready; each receiving processor waits for a signal from its neighbor

and, then, copies the shared data to its local area. In essence the SW approach is very similar to

SEND/RECV in the message passing except that data are exchanged directly through the shared

memory buffer rather than messages. To avoid that data in the shared buffer is overwritten before

it has been read in the pre_ious stage, we have subdivided each shared buffer area into separate

sections for each stage.

-7-



Besides in the main solvers,

communications also occur in

copy_faces where all processors

exchange solutions for the ghost points

in all three directions. It is

straightforward to use global barrier

synchronization for this case.

We also produced version_ of BT using

the PUT and GET methods for updating

the shared memory buffer as described

in Section 3.1. The performance of

different versions will be compared in

Section 4.

3 0 1 2

2
sync

=

point "x_ 1

3 0 1 _ sweep

2 3 0 direction

0 1 2 3

Figure 5: The multi-partition scheme in 2-D. Four

processors are evenly mapped onto 4x4 sub-blocks in a 2-

D grid. The solving (or sweep) direction is in vertical.

3.3. LU Benchmark

LU benchmark employs the symmetric successive over-relaxation (SSOR) scheme to solve 3-D

Navier-Stokes equations. The inherited data dependences in the scheme require the solutions at

(i+e,j,k), (i,j+e,k) and (i,j,k+e), where e=-I or +1, be available before the calculation at (i,j,k) is

performed. The MPI implementation of LU utilizes a 2-D partitioning of the grid onto processors

and a 2-D coarse-grained pipeline model [9] for parallelization. To illustrate the pipeline method

Figure 6 shows a case of a l-D pipeline in which data are distributed in the J direction among

four processors. Processor 0 starts from the low-left corner and works on one slice of data for the

first K value. Other processors are waiting for data to be available. Once processor 0 finishes its

job, processor 1 can start working on its slice for the same K and, in the meantime, processor 0

moves onto the next K. This process continues until all the processors become active. Then they

all work concurrently to the opposite end, as indicated by the large arrow in the figure. The cost

of pipelining results mainly from the wait in startup and finishing. A 2-D pipelining can reduce

the wait cost and was adopted in the MPI version of LU.
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Implementingthe SMPversionof LU is
relatively simple becauseof the useof
the Signal/Wait functions for point-to-
point synchronizations in the 2-D
pipeline. Sharedmemory buffers were
allocatedlargeenoughto hold boundary
points in one K slice assignedto each
processor.Specialcarehasbeentakento
guide the updateof the sharedmemory
buffersduring the K sweepsothatthese
buffersare properly copiedto the local
areasbeforetheir valuesareoverwritten

31

J

15

0 0 0 0 0 0

0 0 0 0 0

o-o-o-0--0
O _Q_..D.._O o

.MHF,_,.. 0 0 0 0

.......... -8
•_' _p o o
•_,_ /
_,O"-. _ o o o

Sync point

Figure 6: 1-D pipeline used in the SSOR solver of LU.

Data are distributed in the J dimension.
at the next K slice. We did not use

global barrier synchronization to

synchronize communications in the pipeline for the two reasons: use of a global barrier would be

very expensive, especially when the barrier is inside a loop (K) nest, and bookkeeping the global

synchronization points would increase the porting effort. For the same reason we did not

implement an MPI-2 version of LU.

4. Timing Results

We tested our RMA implementations of the benchmarks on two platforms: an SGI Origin 2000

and a SUN Enterprise 10000. The Origin 2000 consists of 512 MIPS RI2K 400MHz processors,

each with 8MB L2 cache, running IRIX 6.5. The SGI MIPSpro 7.3.1.2m compiler was used for

compilation and the Message Passing Toolkit (MPT) 1.4.0.3 for MPI codes. A highly tuned,

efficient implementation of MPI is part of the MPT. Within a single system, MPI messages are

moved memory-to-memory. Between nodes of an Silicon Graphics Array system, MPI messages

are passed over a HIPPI network. Latency and bandwidth are intermediate between memory-to-

memory data exchange and socket-based network communication.

The SUN E10K consists of 16 Ultra SPARC 333MHz processors, running Solaris 7. The Sun

Workshop 6 compiler was used in the compilation and SunHPC 3.1 for MPI codes.

There are different classes of the benchmarks depending on their problem size. For our study we

considered class A (64x64x64 grid) and class B (102x102x102 grid).

4.1. Comparison of Different RMA Implementation Strategies

We chose the BT benchmark of class A to compare different implementation strategies based on

the RMA programming model. We obtained the timings on the SGI Origin. In a first experiment

we compared the PUT versus the GET method as described in Section 3.1. For both the SMP and
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the MPI-2 library, the GET method showed a better performance than the PUT method. The

maximum performance advantage of GET versus PUT was about 15% for 256 processes. In the

left panel of Figure 7 we show the comparison of SW versus BAR implementation, based on the

SMP library. The numbers of MFLOP per second as plotted are those reported by the

benchmarks and reflect the scalability. The SW version shows a strong performance advantage

over the BAR version, which is due to less time spent in process synchronization. The

comparison of SMP versus MPI-2 is shown in the right panel of Figure 7. Since MPI-2

extensions for point-to-point synchronization are not available on the SGI Origin we only

compared the BAR versions of the benchmarks. The results were very similar with a slight

performance advantage for the MPI-2 based code. We expect MPI-2 to behave close to the SMP

SW version once the signal and wait extensions of MPI-2 become available on the SGI Origin.

30000 -T , _ i , ' -t

/BT o _°

20000 @/ _.___---A

,JA/

10o00 / I ,_--ASMP-bar
• l--eSMP-sw

o . _ i T ; ;
0 50 100 150 200 250

[3.
O
._1
LL

Number of Processors

| I I I I i

A/ @--@MPI2
• 'i--A SMP-bar

I I I I I

50 100 150 200 250

Number of Processors

Figure 7: Performance comparison of different implementation strategies based on RMA.

4.2. Comparison of RMA versus Message Passing

In this section we compare the SMP based BAR and SW Get versions on the code against the

MPI message passing version for different benchmarks, problem classes, and computer

architectures. The reasons why we chose SMP instead of MPI-2 are:

• MPI-2 extensions are not available on our SUN evaluation platform while the SMP library

could be easily ported to the SUN.

• MPI-2 extensions for signal and wait were not available on either platform.

We expect similar behavior for MPI-2 once the full functionality becomes available on all

platforms.

The MFLOP/s results obtained on the SGI Origin 2000 are summarized in Figure 8 for all three

benchmarks and two problem sizes (class A and class B). A straight line in the figure is a

reference of a linear speedap based on the timing from the single process run. In all cases, the

SMP-SW versions show the best performance, especially on a large number of processors. The

MPI versions of BT and SP performed slightly better than the SMP-BAR versions for the class A
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problem, however, the MP[ scaling suffered a performance drop on more than 200 processors for

the class B problem. In fact the SMP-BAR versions even outperformed MPI.
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Figure 8: Comparison of MPI, SMP-SW and SMP-BAR implementations of the three benchmarks on the

SGI Origin 2000.

OpenMP implementations of the same benchmarks suffer from the fact that parallelism is only

exploited at the outermost loop level. The scalability is therefore restricted by the number of grid

points in one dimension, which is 64 for class A and 102 for class B.

The MFLOP/s results obtained on the SUN E10K are summarized in Figure 9 for all three

benchmarks, class A problem size. Because of the limited number of processors in the machine,

the MPI, SMP-SW and SMP-BAR implementations of the benchmarks show very similar

performance. However, the SMP version of LU does show better performance than the MPI

version on 16 processors, which may indicate the lower overhead of the SMP Signal/Wait

functions over the MPI send/receive.
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Figure 9: Comparison of MP], SMP-SW and SMP-BAR implementations of the three benchmarks on the

Sun E10K.

5. Related Work

In [8] Taft discusses the performance of a large CFD application. He compares the scalability of

message passing versus hybrid parallelization based on RMA and OpenMP. The RMA

programming employed in this paper has extended synchronization functionality from the one in

[8], but we only consider outer level parallelization.

There are number of papers reporting on comparisons of different programming paradigms. A

comparison of message passing and RMA is given in [6] and [7]. The study uses the SGI

SHMEM library for RMA programming. The programming paradigm supported and the

functionality provided by the SHMEM library is similar to MPI-2. With SMPlib we are

employing a somewhat different programming model and compare it to both, message passing as

well as one-sided communication.

6. Conclusion

We have ported several benchmarks from the NPB2.3 suite to the RMA programming model.

Porting the code was straightforward, since we could adopt the same domain decomposition

approach in the message passing implementation. We compared different implementation

strategies of RMA for shared memory computer architectures. Point-to-point synchronization

and the GET memory access showed the best performance. In comparing RMA versus message

passing we found that RMA yielded better scalability.

The MPI-2 extensions for one-sided communication provide support for RMA programming, but

the full functionality is culrently not available on many hardware platforms. As an alternative

programming paradigm to the one provided by the MPI-2 extensions we have implemented the

SMPIib library for RMA support. SMPIib provides functionality for process creation, allocation

of shared memory as well as barrier and point-to-point synchronization. The library could be
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easily ported to different hardware platforms and the performance was comparable to MPI-2

based code where available.

We are currently working on porting full-scale applications to the RMA programming model.

We also plan develop hybrid versions of these applications with RMA on the outer and OpenMP

on the inner level of parallelism.
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